6 research outputs found

    TIM23-mediated insertion of transmembrane alpha-helices into the mitochondrial inner membrane

    Get PDF
    While overall hydrophobicity is generally recognized as the main characteristic of transmembrane (TM) alpha-helices, the only membrane system for which there are detailed quantitative data on how different amino acids contribute to the overall efficiency of membrane insertion is the endoplasmic reticulum (ER) of eukaryotic cells. Here, we provide comparable data for TIM23-mediated membrane protein insertion into the inner mitochondrial membrane of yeast cells. We find that hydrophobicity and the location of polar and aromatic residues are strong determinants of membrane insertion. These results parallel what has been found previously for the ER. However, we see striking differences between the effects elicited by charged residues flanking the TM segments when comparing the mitochondrial inner membrane and the ER, pointing to an unanticipated difference between the two insertion systems. Keywords: CoxVa , membrane protein , Mgm1p , mitochondria , TIM2

    Translocation of proteins into and across the bacterial and mitochondrial inner membranes

    No full text
    Translocons are dynamic protein complexes with the ability to respond to specific signals and to transport polypeptides between two distinct environments. The Sec-type translocons are examples of such machineries that can interconvert between a pore forming conformation that translocates proteins across the membrane, and a channel-like conformation that integrates proteins into the membrane by lateral opening. This thesis aims to identify the signals encoded in the amino acid sequence of the translocating polypeptides that trigger the translocon to release defined segments into the membrane. The selected systems are the SecYEG translocon and the TIM23 complex responsible for inserting proteins into the bacterial and the mitochondrial inner membrane, respectively. These two translocons have been challenged in vivo with designed polypeptide segments and their insertion efficiency into the membrane was measured. This allowed identification of the sequence requirements that govern SecYEG- and TIM23-mediated membrane integration. For these two systems, “biological” hydrophobicity scales have been determined, giving the contributions of each of the 20 amino acids to the overall free energy of insertion of a transmembrane segment into the membrane. A closer analysis of the mitochondrial system has made it possible to additionally investigate the process of membrane dislocation mediated by the m-AAA protease. The threshold hydrophobicity required for a transmembrane segment to remain in the mitochondrial inner membrane after TIM23-mediated integration depends on whether the segment will be further acted upon by the m-AAA protease. Finally, an experimental approach is presented to distinguish between different protein sorting pathways at the level of the TIM23 complex, i.e., conservative sorting vs. stop-transfer pathways. The results suggest a connection between the metabolic state of the cell and the import of proteins into the mitochondria.At the time of doctoral defence the following papers were unpublished and had a status as follows: Paper nr. 1: Manuscript; Paper nr. 4: Manuscript</p
    corecore